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Foundations of Risk Management





Cost of equity = risk-free rate +beta ×equity risk premium (CAPM)

Cost of debt = cost of

borrowing × (1-marginal tax

rate)

 Measures of systematic risk:

 Arbitrage Pricing Theory

(APT):

 Measures of

Performance:

 Financial Disaster:

Barings: rogue trader, Nick Leeson, took speculative derivative positions (Nikkei

225 futures) in an attempt to cover trading losses; Leeson had dual

responsibilities of trading and supervising settlement operations, allowing him to

hide trading losses; lessons include separation of duties and management
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oversight

Meltallgesellschaft: short-term futures contracts used to hedge long-term

exposure in the petroleum markets; stack-and-roll hedging strategy; marking to

market on futures caused

huge cash flow problems.

Long-Term Capital Management: hedge fund that used relative value strategies

with enormous

amounts of leverage; when Russia defaulted on its debt in 1998, the increase in

yield spreads caused huge losses and enormous cash flow problems from

realizing marking to market

losses; lessons include lack of diversification, model risk, leverage, and funding

and trading liquidity risks.

Quantitative

Analysis

 Baye’s Formula:

 Expected value:

Variance:

 Covariance:

Correlation:

 Skewness refers to the symmetrization of distribution. Skewness of normal

distribution is 0. A positively skewed distribution is right tail. A negatively

skewed distribution is left tail.

 Kurtosis measures the distribution is more or less “peaked” than normal
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distribution. Excess kurtosis = Kurtosis – 3. Leptokurtic: more peaked.

Platykurtic: less peaked, flatter.

 Normal distribution: N~(0, 1). Z score:

 Standard error: Confidence interval:

 1.65 for 90% confidence intervals; 1.96 for 95% confidence intervals; 2.58

for 99%.

 Hypothesis testing: Two-tailed: H0:μ=0, HA:μ≠0. One-tailed: H0:μ≤0,HA:

μ>0.

 Type I error: Rejection of the null hypothesis when it is actually true.

Significance level.

 Type II error: Failure to detect the null hypothesis when it is actually false.

Power of test.

 Simple linear regression: Yi = B0+B1×Xi+εi

 R2measures the “goodness of fit” of the regression.

 Regression assumption violations:

 Heteroskedasticity occurs when the variance of the residuals is not the

same across all observations in the sample.

 Multicollinearity refers to the condition when two or more of the

independent variables, or line a combinations of the independent

variables, in a multiple regression are highly correlated with each other.

 Serial correlation refers to the situation in which the residual terms are

correlated with one another.
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 Multiple Linear Regression: Yi = B0+B1i×Xi+B2×X2i+εi;

 EWMA model:

GARCH Model:

Financial Markets and Products



 Forward rate:

 Coupon rate > YTM, bond price > par value, premium bond.

Coupon rate < YTM, bond price < par value, discount bond

Coupon rate = YTM, bond price = par value, par bond



 Callable bond: issuer has the right to buy back the bond. Decreasing rate,

negative convexity.

Putable bond: buyer has the right to sell back the bond.

 Expected loss = exposure×loss given default×

probability of default

 Unexpected loss :

 Minimum variance hedge ratio:

 Hedging with stock index futures:

 Forward Rate Agreement:

Cash flow(if paying RK)=L*(R-RK)*(T2-T1); cash flow(if receiving

RK)=L*(RK-R)*(T2-T1);



rT
0 0F S e rT

0 0F S U I e( )   rT
0 0F S U I e( )  

P

F

portfolio value duration
 of contracts = -

futures value duration
#




of  days from last coupon to the settlement dateAI coupon
 of days in coupon period

#

#

 
   

 

rt
T

up down up
e D1size of up move=U=e      size of down move=D=      1U U D

; 
     



rt
2 0 1p N S NXe ( d ) ( d )    rt

0 1 2c S N N(d ) Xe (d )  

 Cost-of-Carry Model:

 Backwardation: Future price < spot price; Contango: Future price > spot price

 Cheapest-to-delivery(CTD):

Cash received by the short=quoted futures price×conversion factor + accrued

interest

Cash to purchase bond = quoted bond price + accrued interest

 Duration-Based hedge ratio:

 Put-Call Parity: P+S=C+Xe-rt

 Covered call = long stock+ short call; protected put=long stock + long put

Valuation and Risk Models

 Value at Risk: Minimum amount one could expect to lose. VaR(X%)=zX%×σ

 Binomial Option Pricing Model (two-period binomial model)

Step 1: Calculate option payoff at the end of all states.

Step 2:

Calculate option values using risk-neutral probabilities.

Step 3: Discount to today using risk-free rate.

 Black-Scholes-Merton

Model:

 Greeks：



 Delta: estimates the change in value for an option for a one-unit change in

stock price.

 Theta: time decay; change in value of an option for a one-unit change in time.

 Gamma: rate of change in delta as underlying stock price changes.

 Vega: change in value of an option for a one-unit change in volatility.

 Rho: sensitivity of option's price to changes in the risk-free rate.


