复利计算公式为:F=P*(1+i)^n,F=A((1+i)^n-1)/i,P=F/(1+i)^n,P=A((1+i)^n-1)/(i(1+i)^n),A=Fi/((1+i)^n-1),A=P(i(1+i)^n)/((1+i)^n-1)。F:终值(Future Value),或叫未来值,即期末本利和的价值。P:现值(Present Value),或叫期初金额。A :年金(Annuity),或叫等额值。i:利率或折现率,N:计息期数。
复利应用:
复利终值
商务印书馆《英汉证券投资词典》解释:复利 compound rate;compound interest;interest on interest。由本金和前一个利息期内应记利息共同产生的利息。即由未支取利息按照本金的利率赚取的新利息,常称息上息、利滚利,不仅本金产生利息,利息也产生利息。复利的计算公式是:
其中:P=本金;i=利率;n=持有期限
普通年金终值
普通年金终值:指一定时期内,每期期末等额收入或支出的本利和,也就是将每一期的金额,按复利换算到最后一期期末的终值,然后加总,就是该年金终值。
例如:每年存款1元,年利率为10%,经过5年,逐年的终值和年金终值,公式为:F=A[(1+i)^n-1]/i,记作F=A(F/A,i,n)。
推导如下:
一年年末存1元
2年年末的终值=1*(1+10%)=(1+10%)
2年年末存入一元
3年年末的终值=1*(1+10%)^2+1*(1+10%)=(1+10%)^2+(1+10%)
3年年末存入一元
4年年末的终值=1*(1+10%)^3+1*(1+10%)^2+1*(1+10%)=(1+10%)^3+(1+10%)^2+(1+10%)
4年年末存入一元
5年年末的终值=1*(1+10%)^4+1*(1+10%)^3+1*(1+10%)^2+1*(1+10%)=(1+10%)^4+(1+10%)^3+(1+10%)^2+(1+10%)
5年年末存入一元 年金终值F=(1+10%)^4+(1+10%)^3+(1+10%)^2+(1+10%)+1
如果年金的期数很多,用上述方法计算终值显然相当繁琐.由于每年支付额相等,折算终值的系数又是有规律的,所以,可找出简便的计算方法。
设每年的支付金额为A,利率为i,期数为n,则按复利计算的年金终值F为:
F=A+A×(1+i)^1+…+A×(1+i)^(n-1),
等比数列的求和公式
F=A[1-(1+i)^n]/[1-(1+i)]
F=A[1-(1+i)^n]/[1-1-i]
F=A[(1+i)^n-1]/i 式中[(1+i)^n-1]/i的为普通年金终值系数、或后付年金终值系数,利率为i,经过n期的年金终值记作(F/A,i,n),可查普通年金终值系数表。
例如:一个投资者第一年将积蓄的5000元(A)进行投资,每年都能获得3%(i)的回报,之后每年他将这些本利之和连同每年需支付的5000元再投入新一轮的投资,那么,30年后(n),他的资产总值将变为:F=5000×[(1+3%)^30-1 ] / 3%=237877.08。这其中投资者共投入5000X30=150000元,共获得利息87877.08元。
以上就是【复利计算公式】的全部解答,如果想要学习更多知识,欢迎大家前往
高顿教育官方网站!