1.均匀分布
均匀分布的分布函数是一条斜线。
【例题】
随机变量X服从均匀分布U(-1,3),则随机变量X的均值和方差分别是(C)。
A.1和2.33
B.2和1.33
C.1和1.33
D.2和2.33
2.二项分布
二项分布是描述只有两种可能结果的多次重复事件的离散型随机变量的概率分布。
二项分布的数学期望和方差:E(X)=mp,Var(X)=np(1-p)。
3.正态分布
正态随机变量X的观测值落在距均值的距离为2倍标准差范围内的概率约为0.95,而在距均值的距离为3倍标准差内的概率约为0.9973。
当μ=0,σ=1时,称正态分布为标准正态分布。
在风险计量的理论研究和实际应用中,正态分布起着特别重要的作用。实际中遇到的许多随机现象都服从或近似地服从正态分布。
【例题】
正态分布的图形特征是(A)。
A.中间高,两边低,左右对称
B.左高右低
C.右高左低
D.中间低,两边高,左右对称
【例题】
正态随机变量X的观测值落在距均值的距离为2倍标准差范围内的概率约为(B)。
A.68%
B.95%
C.32%
D.50%