2024南方科技大学610数学分析考研大纲及参考书目一览!7月4日起官网将陆续公布2024级考试考研大纲,其中不仅含有考试要求、考试内容还有参考书目,方便考生提前备考准备,详细内容高顿考研有整理,一起来看一下!
2024南方科技大学610《数学分析》考研大纲
  考试科目代码:610考试科目名称:数学分析
  一、考试要求
  1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。
  2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。
  3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。
  二、考试内容
  1)极限和连续性
  a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。
  b.极限的性质及四则运算性质,两面夹原理。
  c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。
  d.函数连续性的概念及相关的不连续点类型。函数连续的四则运算与复合运算性质,以及无穷小量比较。
  e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。
  2)一元函数微分学
  a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。
  b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。
  c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。
  d.函数的导数与单调性,极值,最值和凸凹性。
  e.L’Hopital(洛必达)法则,不定式极限。
  3)一元函数积分学
  a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。
  b.定积分的概念,包括Darboux和,上、下积分及可积条件与可积函数类。
  c.定积分的性质,微积分基本定理,定积分的换元积分法和分部积分法。
  d.用定积分表达和计算一些几何量与物理量(平面图形的面积,平面曲线的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积,变力做功和物体的质量与质心)。
  e.广义积分的概念,广义积分收敛的比较判别法,Abel判别法和Dirichlet判别法,其中包括积分第二中值定理。
  4)无穷级数
  a.数项级数敛散性的概念,数项级数的基本性质。
  b.正项级数敛散的必要条件,比较判别法,Cauchy判别法,D’Alembert判别法与积分判别法。
  c.任意项级数绝对收敛与条件收敛的概念及其相互关系,交错级数的Leibnitz判别法,绝对收敛级数的性质。
  d.函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass判别法,Abel判别法和Dirichlet判别法,一致收敛级数的性质。
  e.幂级数及其收敛半径的概念,包括Cauchy-Hadamard定理和Abel第一定理。
  f.幂级数的性质,将函数展开为幂级数,Weierstrass逼近定理。
  g.Fourier级数的概念与性质以及收敛性的判别法。
  5)多元函数微分学与积分学
  a.多元函数极限与连续性,偏导数和全微分的概念,多元函数的偏导数与全微分。
  b.隐函数存在定理,反函数定理。
  c.多元函数极值和条件极值,Lagrange乘子法,偏导数的几何应用。
  d.重积分,第一型、第二型曲线积分和曲面积分的概念与计算。
  e.梯度,散度,旋度及其物理、几何意义。
  f.Gauss公式、Green公式和Stokes公式及其应用。
  6)含参变量积分
  a.含参变量常义积分的概念与性质。
  b.含参变量广义积分的一致收敛性的概念及其判别法,一致收敛的含参变量广义积分的性质。
  三、考试时间:
  180分钟,满分:150分
  四、参考书目:
  《数学分析教程》(上、下册),常庚哲、史济怀编,中国科学技术大学出版社,2013年,第三版。
  以上就是【2024南方科技大学610数学分析考研大纲及参考书目一览!】内容的全部介绍了,感兴趣的考生还可以来高顿考研频道逛逛!这里有各个多院校招生信息、专业排名、考研动态以供参考!
  学姐还准备了大量初试、复试、调剂阶段需要使用的书籍、练习册、试卷、模板,都是24考生急需的资料,抓紧领取哦!
  (手慢无,每日限500份,直接点击下方图片就可以领取)